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Note 

Solution of the Onsager Equation 
in Doubly Connected Regions 

A number of recent papers have independently derived a sixth order partial 
differential equation, here referred to as the Onsager equation, for the countercurrent 
flow in a gas centrifuge [l-4]. The Onsager equation is derived from the 
Navier-Stokes equations after linearization and the dropping of a number of terms 
and has been used in the above references to analyze the countercurrent gas flow in 
centrifuges. A number of articles on the centrifuge enrichment process have also 
noted and discussed gas flows in and around internal baffles [5-71, although the 
above derivations of the Onsager approximate equation have not, to our knowledge, 
treated the mathematical problem of how to solve the equation in a doubly connected 
domain such as would be created by a baffle. 

A similar situation arises in solving the standard Poisson equation for the stream 
function in nonrotating incompressible liquid flow. Since the net flow around a body 
is fixed by the stream function value on the boundary of the object the problem is 
that of finding and stating in a useful form a constraint determining the boundary 
stream function. Sood and Elrod [8] were able to solve the nonrotating incom- 
pressible liquid case by requiring that the integral of the pressure gradient along 
arbitrary paths enclosing the body vanish. More recently a similar constraint was 
used by Israeli and Ungarish [9] to solve for the flow around a baffle in a liquid cen- 
trifuge. 

In the following it is shown how the pressure continuity requirement can be applied 
within the context of the Onsager equation to solve for the unknown baffle stream 
function value. An explicit expression for the baffle stream function is obtained by 
choosing suitable paths enclosing the baffle, using boundary layer solutions so as to 
yield a formula involving integrals of the exterior stream function along the edges of 
the baffle. This expression can then be substituted for the boundary stream function 
yielding a well detined, although somewhat complicated, but explicit and consistent 
boundary condition at the baffle surface. Alternatively the expression for the baffle 
stream function can be used in a two step corrector method to find a solution 
consistent with the baffle stream function equation. This latter method is convenient 
for numerical work since it avoids the need to explicitly incorporate the boundary 
integrals. In this method a solution for an input guess at the baffle stream function is 

530 
0021.9991/84 $3.00 
Copyright 0 1984 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



ONSAGEREQUATION SOLUTION 531 

obtained after which the formula is used to correct the guess to the consistent baffle 
stream function value. The exact solution can be obtained after one correction since 
the equations are linear. 

EQUATION FOR THE INTERIOR BOUNDARY STREAM FUNCTIQN 

The geometry and notation are the same as used in the derivation of the Onsager 
equation given in [4]. For convenience the Onsager equation for the stream function 
v is restated here, 

where x and y are the nondimensional radial and axial coordinates, and where 
F,(x, y) represents nonhomogeneous forcing terms arising from external sources of 
mass, momentum, and energy. 

Assuming a baffle having some axial thickness, one can derive a formula for the 
baffle stream function using the paths enclosing the baMe shown in Fig. 1. Along the 
sections x = constant the axial pressure gradient can be gotten from the axiai 
momentum equation yielding, 

Path 1 

Ekman boundary layer 

Ekman boundary layer 

i Re1/2S1/4 

- 0, + w'* O),, 
5 

4A4 
= Xx + 4 ,+R 

4S3/4Re?/2 

FIG. 1. Schematic of a baffle showing the boundary conditions along the radial (s) and axial (4’) 
surfaces and the Location of the path integrals. The baffle stream function value k is given by Eq. (9). 
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where y/ is the stream function. Along the sections y = constant the radial pressure 
gradient is obtained from the radial momentum equation, 

(eXdx = 6 (3) 

Substituting for $ using the Ekman boundary conditions gives, along the upper 
surface, y = y2, 

(eXp)X = $(x, y2) + 4S3”Re”Ze”‘2(y/(x, y2) - k) (4) 

and along the lower surface, y = y,, 

(exp)x = $(x, yl) - 4S3/’ Re”‘e”“(y/(x, yr) - k) (5) 

where k is the unknown stream function value of the baffle, equal to the net mass 
flow circulating around the baffle, and I&, yz) and ~(x, yr) are the interior stream 
function values above and below the baffle. 

Integrating the pressure gradient along the two paths enclosing the baffle yields, for 
path 1 along the upper side, 

ex2p(-y2, r2> = exlp(xl, YJ + j“* (O), Lx1 dv 
“Yl 

+ lx2 6(.x, y2) d,u + 4S3’” Re’12 1-1’ 
“X, e- 

“‘(w(x, y?) - k) d-x 
x1 

(6) 

and for path 2 along the lower side, 

exzp(x2, y2) = exlp(xl, YA + ,fy2 (exp),l Lx2 dy 
YI 

+ [I2 $(x, y,) dx - 4S3” Re1j2 IX2 e”!‘(w(x, y,) - k) dx. 
” x, -x1 

(7) 

Subtracting Eq. (7) from Eq. (6) and noting that continuity of pressure around the 
baffle resuires the same result independent of path one gets, 

0 = fy* WY lxxx, - expy L,] dy 
‘Yl 

+ 4S3/” Re 112 lx’ eX/2 
[v(‘u, ~2) + v(x, Y,) - 2kl dx 

x1 

+ jx’ [6(-x, y2) - 6(x, Y,)I dx. 
-x1 

(8) 
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Rearranging terms, substituting Eq. (2), and solving for k then yields, 

+ 1@3f4 Rel!z(ex2/2 _ eXl/2). (9) 

Equation (9) gives the net mass circulation around the baffle in terms of the interior 
stream function and its derivatives along the boundary and in terms of the 
temperature boundary conditions along the surface of the baffle specified by 

&x3 UJ = WG YdPrJ (IO) 

i&x-, Yz) = WG J1JPc3 * :i1, 

Discretization of the Onsager equation, see, for example [lo], leads to a set of 
simultaneous linear equations for the stream function on a set of grid points which is 
easily solved by standard methods. Boundary condition (9) can be simiiarly 
discretized and included explicitly in the matrix of coefficients but this is 
algebraically complicated and so susceptible to error. 

An alternative method requires twice the computer time but is easier to implement. 
Since k in Eq. (9) is linear in I,V one can solve for k in two steps. First, solve the 
Onsager equation with homogeneous boundary and forcing conditions except for a 
fixed input non zero stream function value k on the baffle, call it k,. After obtaining 
the solution then calculate a value of k from Eq. (9) using this solution, call it k, ~ 
Next compute the solution to the Onsager equation for the desired nonhomogeneous 
boundary and forcing conditions, but with the stream function k on the baffle iden- 
tically zero. After obtaining this solution use it to calculate a k from Eq. (9) call it 
k?. The solution for k consistent with the desired nonhomogeneous boundary and 
forcing conditions is then given by 

k=k,k, 
k,-k; 

(12) 

Equation (12) results because k computed from Eq. (9) is linear in the input value PC, 
and so can be solved for k [by Eq. (9)] = k [fixed input] in two steps. The penalty of 
doubled computational time is negligible as a single solution of the Onsager equation 
requires little computer time. 

The pressure continuity condition implies some radial flows into and out of the 
Ekman layers around the edges at x, and x2. In a numerical solution these flows are 
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included automatically if normal boundary conditions along the edges between y, and 
y, are included. These boundary conditions, along the edges x = x, and x = x2, are 

ty=k (13) 

v’x = 0 (14) 

(15) 

Equation (13) is necessary because the stream function at the baffle edge must equal 
the net mass circulation around the baffle. Equation (14) is the no slip boundary 
conditions on the axial velocity component, and Eq. (15) gives the temperature 
boundary condition identical to that at the rotor wall where v = 0. Figure 1 shows 
these boundary conditions as they apply along the baffle surfaces. 

Examples from a test computation involving a doubly connected region are shown 
in Figs. 2(a) and (b). The plots show the axial gas velocity inside a short bowl 
rotating about a vertical axis with a 1% temperature perturbation on the lower end 
plate at y = 0 given by, 

AT/T, = O.Ol(l - ePx). (16) 

The two examples show the effect of inserting a thin disk (thickness 1.25% of the 
axial length) at y = 4 y,, which rotates at the same angular velocity as the bowl. The 
outer and inner edges of the disk are located at radii corresponding to x = 1 and 2. 

The bowl, which has diameter and axial length 18.29 cm and 4.57 cm respectively, 
rotates at 348 hz (A’ = 10). The gas which is at 1 atm pressure at the outer wall, is 
heated in the Ekman boundary layer on the lower end plate, becomes buoyant and 
flows through the boundary layer toward the axis. Ekman pumping into and out of 
the end plate boundary layer produces the axial countercurrent flow shown in 
Figs. 2(a) and (b). At this pressure and rotation rate the behavior of the flow is very 
similar to that in the incompressible case discussed in 191, i.e., the interior flow 
depends only on the radius. 

The case without the disk can be solved analytically. The solution, 

W/au= (~~/~~)AZS-3’“Re-1’2[(1/8)e”‘2-(3/8)e~~””] (17) 

is plotted as the solid line in Fig. 2(b). The numerical solution at axial positions 
y = iyo (squares) and :J’,, (circles) is plotted at the mesh points. The agreement 
between the numerical and analytical solutions is good; the small differences at the 
right boundary are due to the numerical treatment of the boundary condition at large 
X. There is also a vertical boundary layer along the rotor wall at x = 0 such that 
W = 0 on the boundary. 

The case with the disk inserted is shown in Fig. 2(a). The axial velocity plots at 
y = $yO (solid line) and at y = 3 y0 (dashed line) show that a Taylor column is 
generated by the disk. In addition to the narrow shear layer along the wall at x = 0, 
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(a) Disk Bet%-een x = 1 and r 

(b) Disk Removed 

FIG. 2. Generation of a Taylor column in a short bowl by a thin disk with edges at x = 1 and 2.- 
(a) Normalized axial velocity at J = $J,, (solid curve) and .v = a~, (dashed curve) from a numericai 
solution of the Onsager equation using the methods described here and in [lo]. (b) Comparison between 
the numerical solution at J = iyO and ZJ’~ (squares and circles) and the analytical solution (solid curve! 
when the disk is removed. 

shear layers form along the boundaries of the Taylor column at x = 1 and 2. 
Although I could not solve the disk case by analytical methods because there is a 
small variation with 4’ the calculation can be checked by computing the pressure 
difference between two points in the flow using integration paths passing on opposite 
sides of the baffle. The pressures computed by alternative paths agree to at least six 
digits. 

CONCLUSION 

The pressure continuity constraint for flow around a baftle can be quite easily 
applied to the Onsager equation. It can be used to derive a formula for the circulation 
around a baffle with some axial thickness, which can then be used in a two step 
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solution method. The formula could also be incorporated explicitly into the matrix of 
coefficients resulting from discretization of the Onsager equation but this approach 
would require considerably more algebra. The first method is recommended. The 
radial flows into and out of the Ekman layers are included naturally when provision 
for axial thickness of the baffle in included. Boundary conditions along surfaces 
parallel to the rotor wall are similar to those at the rotor wall and can be treated by 
the same numerical methods. 
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